Solution to Assignment 3

29. Find the area of one leaf of the rose $r=12 \cos 3 \theta$.

Solution. As the cosine function is 2π-periodic, $\cos 3 \theta$ is $2 \pi / 3$-periodic. It suffices to plot its graph in $[-\pi / 3, \pi / 3]$. Observing that in this interval, $\cos 3 \theta$ is non-negative only on $[-\pi / 6, \pi / 6]$, there is one leaf sitting in $[-\pi / 6, \pi / 6]$. By rotating it by $2 \pi / 3$ and then by $4 \pi / 3$, we obtain the full graph of the rose which consists of three identical leaves.
By symmetry, the area of one leaf is

$$
\int_{-\pi / 6}^{\pi / 6} \int_{0}^{12 \cos 3 \theta} r d r d \theta=2 \int_{0}^{\pi / 6} \int_{0}^{12 \cos 3 \theta} r d r d \theta=12 \pi
$$

41. In this problem we establish the famous formula by using double integral in a tricky way. Setting

$$
a=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

We have

$$
\begin{aligned}
a^{2} & =\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \\
& =\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A(x, y) \\
& =\lim _{R \rightarrow \infty} \iint_{D_{R}} e^{-x^{2}-y^{2}} d A(x, y) \\
& =\lim _{R \rightarrow \infty} \int_{0}^{2 \pi} \int_{0}^{R} e^{-r^{2}} r d r d \theta \\
& =\lim _{R \rightarrow \infty} \int_{0}^{2 \pi} \int_{0}^{R^{2}} e^{-s} d s d \theta \\
& =\pi
\end{aligned}
$$

Hence

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

Supplementary Problems

1. Let D be the region bounded by $y=x^{2}$ and $y=2$. Express D in polar coordinates. Hint: Decompose D into three regions.
Solution. The curves $y=x^{2}$ and $y=2$ intersect at the origin and $(\sqrt{2}, 2)$ and $(-\sqrt{2}, 2)$. The region D is the union of the following three regions.

$$
\begin{gathered}
D_{1}: 0 \leq \theta \leq \theta_{0}, \quad 0 \leq r \leq \tan \theta \sec \theta \\
D_{2}: \theta_{0} \leq \theta \leq \pi-\theta_{0}, \quad 0 \leq r \leq 2 / \sin \theta
\end{gathered}
$$

and

$$
D_{3}: \pi-\theta_{0} \leq \theta \leq \pi, \quad 0 \leq r \leq \tan \theta \sec \theta
$$

Note that $y=x^{2}$ is $r=\tan \theta \sec \theta$ and $y=2$ is $r=2 / \sin \theta$ in polar coordinates. Also, $\theta_{0}=\arctan 2 / \sqrt{2}=\arctan \sqrt{2}$ is the angle between the line from the origin to $(\sqrt{2}, 2)$ and the positive axis.
2. Let D be the region described by $0 \leq x \leq 1,0 \leq y \leq \sqrt{1-x^{2}}+1$. Describe it in polar coordinates. Hint: Decompose D into two regions.
Solution. As a polar curve, $x^{2}+(y-1)^{2}=1$ is given by $r=2 \sin \theta$. This graph and the line $x=1$ intersect at $(1,1)$. D is the union of D_{1} and D_{2} where

$$
D_{1}: \pi / 4 \leq \theta \leq \pi / 2,0 \leq r \leq 2 \sin \theta,
$$

and

$$
D_{2}: 0 \leq \theta \leq \pi / 4,2 \sin \theta \leq r \leq 1 / \cos \theta .
$$

